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1.0 INTRODUCTION

The quest ion of whether or not the wave aberration function
wt ,.i, of an isoplanatic imnaging system is uniquely retievti le

:iort the system's point !rpread function (PSF) appears to have ýbeen

i.i st st u, Iit-,! Ly A. W, It ho: ,an(! r. '(%' .eii (1.2). asing their

it =nvost ,itton, (s1o t he we I I -known resul t thot the so-cal led

Orenerai , R i ed pupil funrt ion 4

.1,rr Frourier trbansdorm pas r with the coherent spreid fundoe

.ffdt= d.- F(;,v,4;)Ce , (1.2)

W.ither ind O'Neill correctly n:a tid thiat the problem of deducingon
&i! , . ' r,ýti-. the PISF.

hi~x,y) ý- .x,yl 2 (1.3)

oeall" o::rourts to that of retrieving the phase of q i(x,y) from

pts modulus. The problem of determining the phase of a complex

function from the functions' modulus is usually termed a we ...

re.trieval. roblem and, as discussed by Walther and O'Neill, does

n2At Wenratry admit a unique solution unless auxiliary informatiop
of some sort is available regarding the complex quantity whose

phase is to be determined (in this case the coherent spread:i

function ,(x,y)). As an example of this indeterminacy, we,:

, 1. E.L.O'Neill and A.Walther, "The question of phase in image

formation," Opt. Acts 10, 33-40 (1963). 'Opt.2. A. Walther, "The questl-on of phase retrieval in opticsiý, ;Ot.•

Acta 10, 41-49 (1963).
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that T~~~'M anyt cmi.1 Syker pIisnosa"nI .in a t at t ly ayliwnet if

"I mk-t ii in. t• l wa W vle ,•ictit ! t1on .anct i•1im W ) ,ntd -W(-'

"+tie tt ld,'nti' i', .'Ws. Thuk , fqi atich syst1o4ms. * !tt 1atOs of thu

w,%vit ibitk-t-,itloen vi&:wt io;i U~tned ý, kmiw w'd';t rinl1y of til P~tSP will

i, Inta' ,tl V'1,. 1 -iti I |tat u I It IeT , ! d ,11 ortra ) I t lolH1of lthe type tii ycn.

: - inr t 1k, i I sý': ]t , Isc 11 be • , i its t 1i1s' 1 We f l 1 10t

1+, l+• , +.tl'1 . h + t I I ! 2 I : i l qtr. W . hat .lf lltu.ts I tlil l

*'•..tk,,rs h.v:. * i .g I * d t t ptr.insr orpt pdan it, the

* "' a'.%," & i -,I. lk I•,I o s* *! ,Il| I.I de i h (XY

.,% -t .r ,t * h It Of Ito

h,•:*,r 1114 In++r . ;Ih t.tln - lie s ir)(1our knowi ledgeI) been
hla, of;r:• a:. .•+t ! ta * oi * •utnt'ee theoremd Us to ithe ~m

.i-,I t s tijavnn that pr#ele i y thils latir

w %~ ers h ve iný *I itedt tic- posS 11) 11 Ly Of dedli-in'; t.he phase. of

I0N;. a;,. .'. *renth t el.ih 'ro;te of rr phase'n~ ietriemasuvn c t an

*nd ,J!1' m tact iorai pi (ier ;#I alles of in electronm

*. ]4, 11.1-4,1911)c I .ohql r and Sanxton devSsed

"A ~:w ~sl.~?�r.4I~ izI�a*!s! hTerm nasriron (fhT's) for

i 1a dift ra roi ita r odu 1tus a,"d the Modul76us of Its

f~fl:~ r'. lt'hoptjh no one hais ft, - our knowledqe) been

1.~ to .4h an ickoeptab lt un iqjueness theorem ats to the

.~::s 1) tIin r (I by r. ho!le crch t,-rf!a x t on a I (Or it rtn. we

Mm.--)I . -Al oxarinatitOn Of iterative m~ethod for the
a~1i?' -f the phse problem in optics and electron o~ptics,"

"2. hys. 06. 2220-2225 (1973).
.A.,!. ::`renth tzt Til2he prob~lem of phIase ratrieva*1 in light and

vii'cra-.i(*rq:sctpy o~f stronq optics, "Opt. Acta. 22, 615-628

P.Wi. vr*4rhbert; and W.O.Suixton, "Phase determination fromn imace
ani dtiffraction plqinl' pictiures in the electron microsc~ope@"
opttk. 34. 275-283 (1971). R.W.Gecrhberg and 4.0. Saxton,
"A p~rar~iteal il~qorithrm for the determinAtion of _9hase from
ir-aew and diffraction plane pictures," Optik.35.237-246(1972?
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.... I ., f. s P k I- it I- C a s I n 3 e Iu a t. c I y1!.(!l i t',•. filt "•!•Ct 1,$MI difl~ it i I"O~ti 1e CYI ....... ~ C)Xlf aret IqtdtC

Th1')•_ Cte rcht)b.cr'q-.= xon ,ei j L' is lot: thle onl y con1pt" tati on

t.ch!i.;I1,Olt i t o idc1 C <ec;i n-'jn.,j the ihs.; of a complex(' function

"v Io.- 1 1 FInodifl I IS alid t hw Inodul u ou It s F(I:IVr iq0" t ri•aniSfor III An

.• i t aa is yeh ha } Io been procrso'd by Ce rchbe rq and Saxton

whi 1 e "O'; i v, .r ,i, : av! :o i h.C ill." ,." a, c . , tai ored

t ttitc ;)v'obo l vv l •.iu t.he "bu r. st i l (I a 1a un,•; f rol thie

lS 1Ci1) I tletion ,i0 d Joint u1SIi-o3d fUlnction,

"-.': 1' n, W I•v...a• a 1.) w• e a•' t I i ld'A t iol

I I•o. tS tI:t s orcea: ..... C:o) I) si i t ,it I l tv I conlecCtQOd t.o tihe

r-.'',l o."n ;.i. i nilt; f!'on t (n, ta. ortion s of adaptive opt ica .

. . ... ... ... . . t h i s t r

cat3 O';, tie i ,1;, I1 t Ie rtai ov c.I is detectCd by it Sqtuar

i r ray '. o h! •t , . < o vivid <, 1 an :.t ip;i-a tt of t:h ,, The J1SF

(N t v .1 s thtn i ;Ip t 6o a q it i 1. p eoký, s or -roIrz p1ammed with

t hie phlaso vetriievai a i ut i thl. itic. owt14zit !rom thci proce•ssor is
A

In 1: : irti- t ( m -,. otf t. he wtve -I be vrr0t i on ftm•.ction W(.,;. ) whi 1h

1!; then ?1e).,,d to nt:-, li e apprI-: oprA.-te (cont I- s siqnals required

t-o ir).vo the ,0aptktive ilnla(iinq ,ystcin to a state hlay.vinq a more

0. ,. (Gklll , "IPiaso re. rieval from miiodu.ltus data, " ,-Opt.
,oc'. Ai,. 66, 961-964(1976).
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iavorable, aberration runction. This procedure is illustrated

qraphical ly in Figure I.. 1 .
l~v v,',, .••:• . .. .k / "',Id h v k

AN r ra i ov'Iid /I UICI ion tlY to1af(

\•:I\,~~~4r 
I•.;:l~l :.

S.... : _..............

1 Grap.i. I" List. tion oi, the Usc of a Phase R•etrieval
. I*.:.o .-i t hv, in an A dap t i ': I "eamin: S\ , .e.

"TIe phdase It t.erival algorithmsl discussed above can also be

appli .... in s.itutations where t h ' system [PSF is nh'e directly,

observabl I c but Ca I, nCve rI he1 ess, be estimat. -. or imagery pro-

duced by the system. l'or example, if we re: -t our attention to

a single isoplazatic patch tthe imaqc inte.,, profile I(x,y) and

object intensity prof ile O(x,y) are rei ; . the equation

where h(x,y) is the sytem PSF corresponding to the particular

sop dlanatic patch in quest iIn . 'if the oh jcct profile '(xy) is

known the t:quaition (1.4, catn be inverted (eq., by use of Fourier

transforms) t.o yieljd the PSF h(.) which can be directly input to a

phase retrieval alqorithtn. A block diaqvaam illustrating the

procedure is presented in Fi(jure 1. 2.7

"4
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Fiqu.re 1. 2 131ock dia;ratu al' conitrol 1l01) of an adaptive ir~\acii:a
systeor usirl;aiq ".irsverse filter" to estimate the PS1F from

.1.1;~I t)v o it d known o4ý 't.%CI Iý. t The 3S -a PS11 is input, to --:
1)ha ;e- - :ct. rie~t. 1 aio bierthtn; for determnination of- t~hv system
aberratit)Ol o r5 subsequenti control of the optics.

Ili cases wvhere theŽ scene beintj imaqed is either completely

or partial ly unknown one ca-,n st ill employ the aberration

estimationl algorithin (iSt-11SC(I abovO ill conjiunction with tech-

niques which a~lapt ively est imate the scene beinq imaged. The

overall p_-rocess may, however, require long execution tirxes and,

thus, may not evenl Convergle in cases where the image motion is

pronouncedc. Vcor this reason 1FIKONIX has d-.eveloped an algorithm

w1i ilows one to ostimatc an optical system's aberration

function from two imaqcs of an unknown sceneC recorded at different

V)'"l tl -
\\ ,I

'" )-I h ,, I

t I':*,• Ilq r,.x tl I



such as . ; cl,' ; ill I' I'tqt u I, in l''f i ' c't. io ,3 W i t t. hI
•:i z ŽlLW,,.nt t ' ,i I - ti 3, h t.i .; tI.G sls i3 to .::; :; I h1!1 W,

. -, errat. jobl )f, l of hc i w: •,: i-n i vr i h port in t to

5'1 t'~ V l. 0 A I3 I.' o I - 0l1 1'3 I&) 1W 110th SC 1~t'i 1) j nc;

n.lci, d n d bc kno'wn and I.c( dit.1he-ill'i o' f '• 'ilt S wit.hin he
adiapt ivet opt ca I 'vSt oem i' 1,-uir i tc ,led..1ci_, the w ,' f- 1r .

S...l•%•, I1 a"l) . .. , .. -'•'P ..1 I 1 t( P o 1Ž,1c" ' .I V, ( W V ,b ll , 3[ i~l .V, j 'U 1 I .n;. as he !W'h .%? the c&'& hoeinz; j:~rc

(-St. ilma t. io 0 -c , , . , ..,i',) p t,,. 'Iy , 10'('1i i. h (- Vn opI) u loop

' -:l ' i J _ i : .1 O1 on t ho i v',' -rv re -co l ,, ,' ,,* he tWo ilV 1 -it!' ma.,l F

:;hown"3 in P'i.i .:e r k .

,, e 1)1ane #Il

& I ':d array)

I:m,(:,e p.mos M, ,. of Charge
't, " :1 A! I'v'.'-, t "., a t f'-i rc it. d " istancce from

.h. " , .. . ! 'b- .... e )lm,'l pl-, II i loc()Cated(3 it:

e's.h -n'a c- p I-c a2 is do(-.cused b)y the (known)

":'hi~~~~.. . . . . .. .;(.. .. :l:,'t ,..... : ;. .. :.. 05 thlf V.' ... ;V.. I i{(Ž])rt)I 3 .. . ... I) C ltl'Ct

.,.. , 2 -Y ' - fn 76 tl it I, 'd "An a y yt icl ,",t ud(Is i f1 lPha,,;.c C'stimation

",k',c.hn (-5." The oh O,,:tt . of trhis proc'ram was to evaluate the

AP)lic.-atioll: co ,"he opti. cal .,;tem wave.front a be rrat ion cest. imat ion

tec~hin 1m,;('s .d- i. ... . above t4o rw tti-clemnent wide field of view

optical co inf -•.tions. To t-hi% v-1 it was necessary to:

6L. i



pI e 1)1-1'i .ifl an al Vt. i i k I IV. nt i tion into the theorv of w,,ave

abr ,r i'at io c .;t im.ltk:.-:: 2 (t. o eVeoI Wave abe Irr.atioi Ost i mat ion

a i < 'v i[this t o be utz;od in kCoIoit-, r s; iinulIit ion st,.(|ld1cS and , (3) to

!t..I orla111i pi cr s-ivi .uilat ion.; ajoi'alst: known and. nillknown Scenes ill

* :. !het' pr,. ot ' vairy int *tov 0.1t 01 noisc and Wavefro(lt errO". r1

T_ "I'I t ie;t, a iin ,.rn qt:- under iinvost ijation can bt, -

clIsified as s Ihtowln 111 Di aqrall .1 . Ill this di,("ram ". S" . phase

I'etM r i"-vl alcori -it:hin" stands for the algrchbe r- a>ton" algorithmi

wh i -h uts1s tho mul! i.le F!ouritr transform" t-ochn ique doscribed in

;h < -y' 1 h .. &v., I ' *-s f a-"c - ,';. h wn ';I1hoŽmat i ca 1'.' in 1

Jilt

o (t r i eva!
iqo!) "l- i"1.1 followedi

by cont Eo) of

z p " - }=!

f.'
P1hase retrieval -i

ul s , i 1 1 v,

D)eva nev--Gonsa lves,l> , ,alaoi-ithm

control of
adaptive optics

* [ i~nswn

lti:tr<; a, I ' ;,t~er-nativ'c flvstre. Philosophies
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F D. F.T. *n - -7:1

I Vtp

11A

V.i • • t I. , ( wi, k ,! .1:~ :• i ! "1-t . , i ,,., t h o -(• ) l . t' i ( l o i o f h , 0 1-0-r~~i l<!- ton (CS.,) A-!,j0rithpi" for esti imat i n1 tile phase of

the 'Iellc,' OlIizod p( up)iI iu tnot I' , on Voin its o106 u fI, ti)

ý,k1

. tilth, 1nd u 11 (N '11 transform

':b tt.U -, t e .1!1.1 1 yt Ieal \et-t ;ot ic On Iaste of the

proi!r a art, re-ortod in CIhaplt)or 2. Tbhis pha se o01 the effol-ot ill-

clutided iv.,1" i ! ; i.,l 0 the o--"fects of 1)olychromrint. J*Cý

ra .iali on d t " ccto 'r : oiso * l'!n l notion;, irima e ,i1 i d Sii 01

A)h.,r'rjOn irdtitn ii: loe inI spat tial freoquon•y CoOntI. ot: OSc t neC S oi:

the proc:ess of -phose retvleva 1'-1 The resu l. t.s of' t.his invust.i cadtiOll

md'. i'catot !halt-::i

I "The sect.rall. radit.ikio;) bandS ainticipaited in thie
iih-,o mlIsiool do not post? a problem for the phase
retr i iev al i co r i thiIs-

The NIT)'s of c(_'C) arlays anticipat.ed for riSe in the
IAT.0 miission are such that electronic doetfctor noise
will not. seriously degrade the performance of the
phase ret rievwal algorithms.
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I Inat'c kIi .i lsinlq wi 'I I iorti y de(1C"ra•(. tIl(he

|r)(•. eii'l !:C Ot the al(1or1it hin;. but o-111 be ovel' , c l:lc
Sb' %.1S o a mu I t i 1) 1 (nX sa'it) I i S e I .wklss(-.d
in Chap-ter 2

4. The ;-. of- ho phasnce retriova1 at Ikori t hilns
f i.*l op)t iiliuiU ior|" ioi( ttlllOtt- IS 0 IbtrlaLiOn. o['h'[

n v f'ormance for vry weak anc, very, ntt:ronq allinolit.S of o-
aberr,-atiion de!C(orl(S on the sional to noise rat: io
and on the Spatial tfroquelley coflt.cnt of- til hOclws
[bo"illiq Ollaqold,.,77

5. Tit offec.'tn of s colio spat ill.r requ{oncy content arld

M it'e detector s .'e on the thamse estimation
a1 qor-ithw.,• (4eI)tild nn the alllowtiL of bole_,ration
-S1-10 l it in stud ies.

h I *i" p~ar't: of tlhc work pe r forme(d iln tIhe pro qiav was , of
'ott s lt,0vot d Io . y Pnu- rat • , nl W new of twi rv to i l 1p).ilcnl nt

11 e va tr ,,U , ,n o s t , i.` n I t onhn•kt,.s . sof twwar,

oene ratedl Likil j il' the CO!,,r SO of the pnrourain i netude st

! J ttl. 'l .•li'~'; ! ... �.he L,(-.lithe ~ O le ,i.1 e pl-e
'13A t.,; to !Ale

A p' v~**j '-*:1n to' pt)r o In. 11,;ovithn

(i I S IDflal 11 Vithm

Fi'he 1.5ll t..ilK Ill t-IC :ta.....,,, w , e ,ork (Tr sk .1.2.3) calIs

for oin) tezt tost int: n : tiny V.,i o) .1ther iVno:i estimaltiOnl

v" kaoes ev•-•e-)0( in the iproqran%. The results from

,.r ;.sontative sim.ulat.ions are' presecnted in ChapterS 3., 4, and 5.

i'hne resits. f ro- the s imullat. ion studlies using the Gerchberg

Saxton (C.,..) I ,:or thn are present.ed iA Chatpter 3. This

a .iort hr' did not perfor:m well in the simulations. In particular,

the re.- I ts of the sin1, I ations in:dic'ate t:hat: the alqorithm is not

9
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"robuSt." in two dtinlension)s (i.e., its performance i s higAhly

(ie p.nfdoll t oZ'1 t0h1% C i.e1 of I st r Y tt in 0 stz i11i4 t 04)). U,-Ca !;0 of th i S

it Wits d-(1C i Lie d to C I)IOC.?O(i d IreCt i y to t ht.' tWo dAi lQ liSi()fl it .

Db-_va1ey-(G,8.A1\,0es a 1110 it-h1i1 earl.y iln the counrse of the plroqram.

.i-he roul t..s from test in," of the two-dimensional Pevaney-

(cm. salves aloriithms are presen.t:ed i n Chapter 4. We say

a11,;;o-ithms bocause, ais ';equired by Task 4. 1.6 of the Statement

of Work, a number of alorith;ns were developed and tested

Cor respondfno i f to different mordels of the wave abirration funct i on

the pr'i oiple conc lusio n to be drawn from t0he simual ation st.udies

presented in Chapter 4 is that these algorithms work extremely

well anid are very robust. so long as there is no .limt_ to th1le

IuOl:0 *01 COf u 0 .1utat ioll t. iflk lII lowed. S;onmetilmies extremely Iy on (3

OXockitiofl titnes are required by the al (qo)rithltls. The reaso-. ns f o r

this are discussed in detai I in Appendix A, (.long with a state-

nw:lt of th.' a1(11rithM :i.nd ,a more compl-teo prosentation of t:he

W t (' tl tt .-! 4.

(ih.,t e r S I) o ,;ents rs": u t'!; of t1.h" two inl',qe p)]dtlle si"illU a -

I ons;*. One pa |). CU1., " wave.ront.. aberrat. ion is USeU, wit.h varying

noise levels, detector s.zes, and object SlpeCt-ra. Results show

th;at the dlqkorilt.hr; will y.-.0!d Uood ,t ilncates eveln in the presence

of larce amounts of noise, large detectors, and larqe objects.

Htowever,* the saime problem of lorng execution times is present as

in the one iniaqe cse Appendix B pr,-osents a propriet try vyersion

of Chapter 5.

r
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* 0 ANAIY,' I

In this we 'Vc Wc , w the work pcrfort'ned on the tasks

c ':itatind wit h the "Ana I Vs is" pa raq raph (4. 1) of the " Statement

Or Work" for *ihe (otit ract In SeOction 2.2 we discuss the offect

o1 1.det 5d-)! inq o IM iup, of ;i star ob (.))Ot For this case it

is shown that the phase retrieval is not unique. In Section

2. we show that the p.hase retrieval will I also not be unique

i hf -ho i err.,t ions al." "tuo'h t hat the Opt ical 'lratisfer Funct-ion

(OTF) is well aI 1r1o:iinatcd by the so-cal led "Geomctrical Optics"

T'. .Ct ioI 2.4 discussos a possible te.hniique for achicviit~j

Nyqu i st ra t C Samp I i n by tltOdt 1S 0f a nq) I i nilq mu It i )1 e. 1)roc((>dtire

...lite offe't. o! finito detoctor si;., a nd of --cone qpatial frequency

rontent are discussed in Scction 2.5 where a theorem is

10.,dA)ii.,lih0d whi1(:11 Sh1ow t hat tholes tWO factors have. precisely the

sa:le e Cwt on ph e -- -' I I , VC,..,,- y C, 8 o ,on 2. rk"S ad sq(s

tihe quest i-on of thto of feft. of non -motiochromnatic I ight on phase

ret r i V3 I

"2. 2 THIE i:i OF"!.;cT Ol A1.!AS ING ONN V!M ._ RETIMI ,NAL

For thle oaso of a star object the phase. ret. rieval problen,

red(iucOs to that of dOte rminiinq the phase of the coherent Spread
I unct ion,

(2.1) i;.0

from its moduilus ,'(Xi and the modulus of its Fourier transform
I. .( ()I . I the above equation (1= 2U is a "reduced coordinate,"

with f beinci the focal lenqth of the imaging system, k the

wavelength of the liqht field and u the position coordinate over

the exit pupil. The artlument of VP(X) denotes position along

the imaqv plane. For simplicity of presentation we have restricted

4; fl-:



out ast toi.ntioci to tthe one-d if i•gi.t x •tia .. The results

es tab . X s-hed be low ho I dOl(Il equaly we I I in thte case of two I
Si me s i on , oer

We note t.hat since the inteklral in r'quation (2.1) extends

on I Y ove v t. ll f i 11 i toe in1 t 0 r-v.- I 1- (1 Q % I wo may expand the

""Gcei" - .. Pu.:i I Function F(o) (0 in aourliei" series with

period 2Nno .ý

UV i - . ail~

I' O) C~tc 0 (2.2)

where N is ;iriy intc-iev k unity. When ivquattion (2.2) is submitted
into !'Euition (2. 1) one obtains

Noh

(2.3)

S. f . V - <X

(NI

1:1 (2.4)

o ern Lq, f r. rý (2.t jinto 1(2 .2) i on -1 (2b th a t ; AI

0° (2.4 ( oo )
w!,.w.'re wt, haivo used lEqu.it ion (2.1.1 l'inally, ul-x•n substituting }~

fl -m :,tia i o 1.".'41 into Equltation (2.3) we obtain the , sampling lJ

s r ies reprcs en t aition: of *•'1× ( .i

A:

;A



i s i.portLd,1t to IotLO th"At f'0' "he Salt-,Pliiqy Series . S)

to hold th11 quntLity N -mm;L bQ k pu)ositive intcl-lcr .;reater thlan

or equal to UlflIIy. it -4 I , the cotllylvx Unict1Ioll 4'(\) is sitid

to be satmpdc! .at. its Nywqalst IRate while for N75 it is samipled

abov, it s tyn I Ate Nw t)h N cw th r kodu us squar"I ,. 2 t of~ ,x ) al1so ,iih',it. .:,:pl ill S('!'io rp e:n ;'|l'S l t't iOnl 1l n:,

pa rticulIar, it is r.ot dift icult to show that

2 1 x 12 0 1:0 ( M(2&0)I '

(2.6o

when, M 1 iS .io , pO .I lo 1wt1 \ lc 11 -itlot " O1"* c"qu.l to mlity.

Wi I °
*;i:', i.M , 2.ix ,v .'.• • t, 1".,: ".".I.c: .t it::; Nyqust.

I: ;t, wha le it :, l ~. it :: ';.l IC, t ... <vorS.i;mple,.

4(, noto I h.i t t hV ; t.; u r Ilk, n'vci u , I :+ u (of,

A o n ~| , :• t 1 x v , ( x ~ : , t - '., o o l i t , 1 1 ! -).t r a. t e f o r • , T i

Cdl 1i1 ,;wi". o , tIc eu t.ho a it hat he b.lndwidth oti t h0

111tl.ijus o: ".:1 . 1 i 1" ; twitre :, t of thelt ftic-t ion itself. ) III

I ru 1 tilt ' ht " :l' m• k , i(.1,: t. | n. .1 -owe t ilt *I'loqua t e
sIm~p Ii;nc : 0! x 1 1

- - 7)

wh IIe, t he Ix l m umi -Ir 1 spa,'l -I(. I 11 Ow. d tor s;dn)|pn I w.1 of tho

rktkxIu1u,; ot (N) (0: , 0o01i ,.i o t. 1y° of Wx) ) it;

"' -(2.8)

... ... .

:;*1's



We shall now show that if the modulus of W is sampled at or

below the Nyquist rate for g(i.e., if Aio.> Y, then the

retrieval of the phase of jfrom its modulus and the modulus

IF(a)I of its Fourier transform will not be unique if the

pupil function is a constant.

Theorem I

L.et the pupil function f(c) 0 IF(.%) I f0 be constant.

Further, let W(O) be a continuous but otherwise arbitrary

wave aberration function defined over the exit pupil "u

-a < a0 and lot ii be a real nunmer in this same interval. Then

any aberration function of the form

LW (o-~ + - ) if -a <
0 '01

-(a)) (2.9)

will ienerate a coherent spread function W (x) having the same

modulus Wx)1 at the sample points x n A; n = 0, +I, +2,...

Proof of Theorem I

From 'quation (2.1) we have that

(X O e., X e X. O .I10)

"f 00

14



On subttitutiij1 tiroIm 1I.quation (2.9) we obtain

-x) 0  ( A 0-
~i W l i t 0) (Ix-•:

da 4,

fo0 1-.--W( -• - O -aA o

+ fU f !x e C,(2,11)

wt)ich si npl i tfi- to become
fl i t

'l,(X) t" o•it'O / h' e e- X'×}:

"0

0 x d a (12)

"0 0 .1

0 f,, (q x -a, c (2.14) a

which e,,;ta[, i s~;he,.; the t h•,or'em :

x 11

Io



The above Theorem shows that it is extremely important to

sample at the Nyquist rate appropriate for the intensity

of the image in order to obtain a unique determination of the

wave aberration function. As we shall show in the following

section nonuniqueness of the phase retrieval problem is also

encountered when the aberrations of the system are so severe

that geometrical optics gives a complete description of the

image forming properties of the system.

2.3 THE EFFECT OF LARGE ABERRATIONS OF PHASE RETRIEVAL

The distinguishing characteristic of a highly aberrated

imaging system is the relative unimportance of diffraction, and

interference effects in determining its image forming properties.

In particular, it is common practice to c aracterize such systems

by the so-cailed "Geomtetrical Optics Optical Transfer Function"

rather than the exact (within the limits of scalar diffraction

theory) transfer function q iven by

OTF(FxFy) =ffdu dv f(u,v)f(u+2AF# Fx, v+2XF# Fy)

[W Fy (2.15)
1 2_[ (u,v) -W(u+2AF v,2AF#

where F# is the F number of the imaging system. The Geometrical

Optics Transfer Function is obtained from the exact expression

given in Equation (2.15) by taking the Geometrical Optics limit

V- 0. The details of performing the required limiting

operation are quite straightforward, (cf., K. Miyamoto, "Wave

Optics and Geometrical Optics in Optical Design", in Proress

in Otics, ed., F. Wolf (North Holland, Amsterdam, 1966), Vol. I,

p.43), and one obtains rw ) W .vIFW av Ow(u'v}i
f•-i4wF# [x -- F-

OTF (F F du dv (2.16)
G.O. X y

16



In Equation (2.16) A represents the area of the unit circle

and OTFGo. is the Geometrical Optics 0?F. '4
.0

In the following analysis we employ the Geometric Optics

Transfer Function given in Equation (2.16). It is found that

this quanti a bt itself doe.s not uniquely determine the. slopes

O)W/Iu, 1iW/5v) of the wave aberration function. In other words,

within the framework set by Geometrical O1tics, wavefront

estimation via the use of phase retrieval techniques is not

It is extremely important to note that this nonuniqueness

holds only in the geometric optics, limit when diffraction and

interference effects can be commplet-e.liqgnored. Theso effects

wil I be present no matter how larje the aberrations and it is,

evidently, precisely these effects that are responsible for the

success (and apparent, uniqueness) of phase retr.i.eval teclhniques

in the case of small and moderate amount!.; of aboerrat.-ion. If

the measurement process used to deduce the OTF were rfect, -:-

then the effects of dif fraction and interference on the OTF would

be observable ;nnd, hence, the process of phase retrieval woald

(presumtably) be unique, However, when the aberrations are large

and measurement noise is presert, these effects can becorV

"l.ost" in the noise with the result that the Geometrical Optics

Transfer Yunction fits the noisy data quite well and phase

retri.eval Will not be; Unliqute.

The severity of the aberrations and the amount of measure-

ment noise required to cause phase retrieval techniques to fail

is not known at present and can probably not be determined in

advance even for the simplest optical configurations. Hlowever,

preliminary one-dimensional computer simulations indicate that

diffraction effects play an important role even for cases of

very severe (in excess of ten waves of aberration) wavefront

o-rrors.
17



Finally, it should oe noted that although the results
presented below establish the fact that the wave aberration
function cannot be uniquely deduced from the Geometrical
Optics Transfer Function alone it is quite conceivable that
certain types of auxiliary information concerninr '..he aberration
function might lead to a unique specification of this quantity.
In particular, it appears likely that the phase retrieval will
yield a unique solution if one knows in advance that the wave
aberration function admits a finite order polynomial
representation; e.g., an expansion into the classical wave
aberration polynomials.

Proof of Nonunigueness in the Geometric Optics Limit

For simplicity, let us consider first the one-dimensional
case where TP G.O, reduces to

r U

OTFO (F) f du e (2.17)

with

qfu) = - 4 r FP#lu)

We now establish the following Theorem.

Theorem II

If f(u) is a bounded solution to the integral equation

(2.17) then so too is the real valued bounded function d(u)
which satisfies the infinite set of conditions

1 '1
in n.du gnlU) du dn (u); n = 1, 2, 3,... (2.18)

-i -i
but is otherwise, arbitrary.

18j
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Proof of Theorem II

Since the integral in Equation (2.17) extends ovier a finite

interval and the Taylor series expansion of exp[i Fx g (u)]

is uniformly convergent within this interval (due to the

assumed boundedness of g(u)) we may write

OTFO (Fx) - i nF;G.0. n : u (u) 1 . 9

n=O -l

If the bounded function d(u) satisfies the infinite set of

conditions given in Equation (2.18), then we can replace each

integral on the r.h.s. ol Equation (2.19) with the r.h.s. A
of Equation (2.!S) and thus obtin i

F 1 i F d(u)
OTF;."(x --.- du dn (u)= de x

(2.20)

where the last equality results from the assumed boundedness of

d(u) and, hence, the uniform convergence of the sum. This

proves the theorem.

Theorem 11 implies that th.e quantity g(u) and, hence,

the derivative of the wave aberration function ýW(u)l/u (i.e.,

the wave! ront slope) cannot be uniquely deduced from the

Geometric Optics Transfer Function. In particular, it is easily

verified that the infinite set of conditions given in

Equation (2.18) hold if segments of the g(u) function are inter-

changed. Even if one imposes the further condition that the

function d(u) be continuous, it is still not difficult to

construct a function which satisfies these conditions.

Figure 2.1 iliustrates one methcd of generating an equivalent

19
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function d(u); the level do can be shifted at will, showing

that there are an infinite num.,r of such functions which

yield the same transfer function. .'rom the method of

construction, these equivalent functions may not have

contianuuut fiLst derivatives.

glu) d (I."/i"

/T, A

( /(U) 0 ......... .. -

A

I j I:
5

. • 2

.--,q T rs-.--rT ,---

, -I '1L

Figure 2.1 Two Functions Yielding the Same
Geometric Optics Transfer f'unction

20
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F j ... ...

An equivalent function possessing all the quantities of the

original function 9 (u) consists of the "mirror image" of the

.original function. That is, the function S(u) = g(-u) as

shovrn in Figure 2.2., will have the same transfer function. This

can be proved by direct substitution:(I (UI

-1 +1

•. c; {-u

-l +1

vio ure 2.2 Mirror Image Functions

Po.sessinq Identical! Transfer Functions

In a practical situation, the wave aberration function and

. hence its slope g(u) is a sampled, discrete process. We see

that if there are N independent samples, we may arrange them in

any order, thus generating N! different functions which

correspond to the same transfer function. There may be several

sets of samples which assume the same quanti2ed values; thus

iz the number of distinguishable, displacement functions is

.accordinqly decreased, but this is not important to this

discussion. The important point to note is the lack of

uniqueness in determining an aberration function from a

21
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Geometrical Optics Transfer Function.

An entirely parallel discussion as that presented above

implies for the two-dimensional case. In particular, we have

the following theorem;

Theorem III

Let aW(u,v)/ 3 u and DW(uv)/ 3 v be the first partial i
derivatives of a wave aberration function which yields the

Geometric Optics Transfer Function.

-i41rF# F W(uv) +Fy 3u')

OFT (F F) du dv e

(2.21)

,urther, let ZiW/1u and 'W/'\v be everywhere. bounded within the

pupil area A. Then there exists at least one other wave

aberration function W(u,v) which also has bounded first partial

derivatives 'A/ýu, ?W/3v and which yields the same Geometric

Optics Transfer Function as does W(u,v).

We omit a proof of Theorem III since it follows directly

from the discussion presented above for the one-dimensional case.

2.4 A PROCEDURE FOR INCREASING THE EFFECTIVE SAMPLING RATE OF

AN ARRAY OF DETECTORS i
As shown in Section 2.1 the phase retrieval problem does

not admit a unique solution if the PSF is sampled below the

Nyquist rate of (2/4F0) samples per unit length. Throughout this

document it is assumed that this sampling requirement is met.

However, it is anticipated that the actual detectors to be used

in the HALO mission will be too large to meet this rather

22
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stringent sampling requirement and, thus, it was necessary to

explore alternative procedures for achieving the required

sampling rates.

The procedure described in this section uses a relative

image motion betwee~t the detector array and the image from

which the aberration estimation in being performed to obtain

a higher sampling rate than would normally be achievable with

the detector array. Since the effect of the finite areas of

the detector surfaces simply modifies the spatial frequency

spectrum of the object being imaged (see Theorem IV in-

Section 2.4) we shall, in the following discussion, limit our

attention to an array of point detectors. The results obtained

hold equally well for the case of detectors having finite areas.

The proposed technique is most easily introduced in a

one-dimensional context. In Figure 2.3 is shown a one-

di•n.i•.onal PSY' which is sampled by the linear array of point

detectors having a sample spacing of A It is assumed that the

PSY moves across the detector array with a uniform velocity V

and that it does not change shape over the time interval (A/V).

At time tI, the detectors will measure the values of the PSF

labeled by the number one in the Figure (The detectors are

assumed to be "turned on" only in a very short time interval

centered at t 1 ). At time t 2 =t 1 + d/v=t + A/2v the detectors

will measure the values of the PSF labeled by the number two in

Figure 2.3. Because the time increment between the reading

at t and t 2 was selected to be 0A/20) the above process is

seen to yield equally spaced samples of the PSF with the

samples being A/2 units apart. It is clear that by choosing

smaller values of the time increment even hiqher sampling rates

can result.

23
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PSF
MIY at t

PSF ait t - dIv

/22
d A/2

I I

I IJ

9 --- Array Axis

A 'An 1!cc4r

Figure 2.3 Two sets of samples of a PSF obtaine!2 at the two
times t, and t 2 = tI + d/v. A relative linear velocity of V

is assumed to exist between the PSF and the detector array.

I

An entirely analogous situation as that do-scribed above i

results in the two-dimensional case. In two dimensions, however,

it is important that the motion of the PSP at an angle
relative to one of the detector axes. This condition is necessary

in order to achieve a high sampling rate in two orthoqonal
directions.
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In Figure 2.4 is shown an array of point detectors (large

dots) having a sample spacing of A. Assume that a PSF were
to sweep across this array at a velocity of V and at an
angle at 45° with respect to the array's horizontal axis. If

the detector array were to make two successive instantaneous
measurements separated by a time interval of (A/W'V) seconds

apart then the two sets of measurement together would yield

samples of the PSF at all sample points shown in the Figure. 1]
(The large dots would be the sample positions at one time and

the smaller dots the sample positions at the other time.) The

overall process would thus be equivalent to sampling the

stationary PSF by a regular square array of point detectors

having the geometry shown in the box in Figure 2.4.

@ "0 0.00

* 00 90 0

* 0 00 0

0 0 00

0. 7 \a.4.. 0 0 0 0O0

*•• • relativ direttoo aofmotion

p. 7d7t 0 0 0 dots
S 0 -----

I+'iqjure 2.,4 Sample:s of ,a PSV moving at a uniform velocity i
at 45° relative to the horizontal axis of an array of 2

point. det ector.s (large dots).

:• ..25
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A higher sampling rate than that shown in Figure 2.4 can

be achieved if the angle 0 between the array axis and the

direction of motion of the PSF is smaller thin 450. However,

it is easily shown that in order to obtain an equally spaced

square matrix of samples this angle can only assume values which

satisfy the equation

Tan 0- 1/n; n = 1, 2, 3, • • (2.,22)

A plot of the allowable values of 0versus n is shown in

Figure 2.5.

50,

40m

bb

W

I't

I 2 ' .1 1 7 .

Figure 2.5 Values of S Satisfying
Equation (2.22)
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The condition (Eq. 2.22) results from the requirement

that the relative motion between the detector array and the

PSF be such that at the beginning of a new sampling sequence

the relative position of the PSF and the detector array be the

same as it was at the initiation of the previous sampling

sequence. In the case shown in Figure 2.4 the sampling sequence

consisted of two sets of measurements. At the initiation of

the sequence the measurement points are indicated-by the large I
dots while at the second sampling time the measurement points

would be the small dots. Since the direction of motion is

450 the next Aampling time. (assuming samples to b# taken
(A, 2v) seconds apart) would occur again at the locations of
the large dots and, thus, the whole process would be repeated.

In Figure 2.6 is shown the case oi n = 2 or 0=26,56. The

sampling sequence consists of five equally spaced measurements

occurring (1/q A/v) second apart. (in general, the number

of measurements in a sampling a oence is n 2 + I and the time

between samples is thus ((M/Vn + 1) A/v seconds). At the

sixth measture•mnt time the relative position between the sampling

array .)nd the PSW is the same as at the initiation of the sampling

sequence so the whole process repeats after every five measure-

men t S,

27
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iimagin9 systems is aliasing in~troduced by undersampling in the

image plane. in addition, the finite site ot each eloment of

an array of detectors has the effect: of decreasinq the object AI

spectrum at high spatial frequencies and, thus, leads to small

sigJnall to noise ratios at high spatial frequencies;. both of

these effects have an impart on the process ot aberration

function estimation. In the following discussion we present

the analysis which relates the ortput of a two-dinvnsional

array of detectors to the image being detected and in the process

establish the result, that scene spatial frequoncy content and

finite detector size have precisely the same impact, on Ihlase

retrieval.

We shall assume that. the imaio .(ixy) of an object ()(x, y)

is sampled by a regular array of Pdentical detectors such as

shown in Figure 2.7. In this Fiqgure

X n.
(1g

0~
(M m.,, f

whore 1/2f is the 'tntor to contetr sepairation of the detectors

o 21

U iqure 2.7 ampl inq t Aray tleometiry
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In the absence of noise the response of each detector will be
assumed to be given by

1 n,m =ffdxdy' I(x', y') D(x*-xnY, y- yn( 2.24)

,Ior ly J> 1/4f
"where D(x',y') = 0 if x oo ' /4o 0

By substituting the Fourier integral representation

(x',y) 1 dKdKYI (KK e
x y y2.25)(211)

into Equation (2.24) we find that i becomesn ,m

ix + K:

i dk dKy 1 (Kx, Ky) DI(Kx Ky) e f K0 0k

(2,26)

whe r e ]

w bhere y) x'dy' D(x', y6) ] (2.27)

A

and }

(f -i [K X 4 K Y '

x y

I(KxK "f) = x'dy' lix',y')e

(2.28)

= O(Kx K) OTF IKx Ky)'

•:with 0 (KxKy being the spatial frequency spectrum of the

object being imaqed and OTF (Kx, K ) the Optical Transfer
x y

Function of the imaging system. Finally, on substituting

Equation (2.28) into Equation (2.26) we find that

30
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o(K = ) d(K d K K OTF(K K e ( x. 0)
- y x y x y

) 12.29)

Swhere

oelkx, K 1) (DK, KyI OIK, K) (2.30)

We conclude from FEquation (2.29) that the effects of finite

detector size as manifested inthe detector frequency response
function D(VYx, Ky) and object spatial frequency content

O(K , K ) have entirely equivalent effects on the output i
x y m

from an element of the detector array. This "equivalence

property" allows ul toconcac••place an actual detector

rray b_ a~n .arr.:ay_ _int detectors so lon,2. as we also

Sreplace the actualobect ctr.- OK, K) b,"....y the modif ied
x y

c__m O(K, Ky) as defined in EQuation (2,30). This

equivalence is stated precisely in the following Theorem:

Theorem IV

Let the image of an object having a spatial frequency

"spectrum O(K , F I be sampled by a r-.qular array of identical

detectors havin'g a center to center separation of 1/2f and

frequency response function 1)(K ,x K y). Then the output from this
detector array is precisely the same as would be obtained from

detectin.i the image )f an object having the spatial frequency

spectrum 6(Kx, Ky) = •(K0,, K ) DI(K, Ky) by a regular array of

point detectors having the same center to center separation
. 1 ,/ 2 f 0
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Proof of Theorem

The proof of the Theorem follows at once from Equations ii
(2.29) and (2.30).

Comments

The above result is extremely important in that it allows

us to always deal with an array of point detectors without any

loss of generaiity. Because of this, for example, the analysis

presented in the preceeding section is directly applicable to

arrays of non-point detectors. In addition, it shows that the

problem of phase retrieval from a star object using a regular
array of non-point detectors is precisely the same as the

problem of phase retrieval from non-point objects using an

array of point detectors. This later equivalence turns out to
be extremely important in the simulation studies presented in

Chapter 4.

2.6 THE EFFECT OF NON-MONOCIIROMATIC RADIATION ON THE POINT 4':

SPREAD FUNCTION

In order to determine the effect of polychromatic radiation
on the process of phase retrieval, a number of (one-dimensional)

multi-spectral PSF's and OTF's were generated, havinq various

amounts of coma and defocus. The input spectra for these PSF's

and OTF's ,-_ontiained three to five wavelengths and had a total.

width of 10% to 20% of the central wavelenth. The results :-

indicate that the introduction of many spectral components

affects the detailed structure of the PSF but not its general

shape. Another way of putting this is that the OTF is affected

mainly at the higher spatial frequencies.

32
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Method of Calculation

Let P(x, A) be the point sprcai function at wavelength X at

point x. Then the multi-spectral PSF is given by

P(x) =C (2.31)

where the quantities Cý represent the relative weights of the

different wavelengths. For each wavelength P(x, ) is given by

-27T i W--N

P(xA) f (d (I f (I)e F4 (2.32)

where F# = the F number of the system

=t the aperture coordinate/the aperture radius

f(s) = the pupil function of the system

W(f) - the total phase shift due to the wave aberration
function W((&) at wavelenqth A

It is important to note that it is tactily assumed in this

analysis that the wave aberration function W(a) is independent

of wavelength. Such an assumption is valid for optical

imaging systems employing high quality mirrors such as is

envisioned for HALO.

The plots presented in Figure 2.8 through 2.16 show the

total phase shift at the central wavelength; i.e.,

W•1) - A n (2.33)
n n

the multi-spe.ctral (polychromatic) PSF, aad the modulus and

phase of the polychromatic OTF for various choices of the

expansion coefficients (aberrations) An and for various

wavelength spectra. Figures 2.8 - 2.10 show line spread

functions and OTF's calculated for an aberration of one wave of

33



Pr 
I

-It

S ' 4,. 

rn:

'Ut "-U'

I ; 
Y ' A '

-- 1 • 
.4c ' : i1

a fl% 
*.-j,,, J'-,.

:-- 

". ,a

\ .+K

S.. . + + . e'a

-+-x 
b "•.. ; -

-I-•,: 
L•,..t- 

., - .* : :

w.... N 
" +" +"t +;

[•.+:. 
......... .. . . .......

}4 
• "

S':i

iiii _ _ _,_



Li

4.

-- -.. j I-. I-'

9. *4

$ 3

if '� �1

U
-h

pa
'p �. fin

II � II
Is

� *h.
* d.. * ,,

- *.( �,ae
pp tI� c

1 I t�0�* C
H C,

5�1 ..-., * -.... -.-. t..: S

.V. &)J� 33* �r. flf *.. *, I .

-.

S.
C

9. lAs
S
C

4) - CIt; *' N V o $
1 9. I -

* S
I - 5

'9) I. *S
- *� 4

a

tM. �-.&
I *'-a: --

a
e3e�.- �4

�, 'I 4- ..2"?'L?� cwure-�'Vk?
,/ I C)g

1 ½ - .' I'.. Y grin
I v -, I,�

'-N I?�' '4EF�.
.9 V. - I.

:. -.......... n,*� ar: me
i�. S7

35

r I
4 -. �---------- � �.

V



HE-:

- 1s.

S.. . . ""t•'-.•, . -,

.......................... .. i'•,• •, C.•,. , <'.. ,•

,fI,•'.': " < ~. ,;• -'

S"11• " • ~ Li . s...>,k .r - i
' • 

, I' € "

S: ..

S<a. iii

-9 2

• ~ ~ ~ ~ ~ ~ ~ $ ° "S ki -• ' - .

S...... .... N: "N. ,., : a,
.,•::.:..: .. . . . ...,,e.'. . ,

•+ .• -'• ,-.

cc:. ...... :.. 
. . P- 

"

--il
.71.

M t .. 
".. -

3 6 
. ...

fii



17-•

IL
"" I i

, • 4, - V

,. ' D 4 Ja ' .

• I"i . i i

_ ~" .T1b

• o . i*

Nf,l !-.4 .



I
S I4 0 TIM

It
11

I.,. /
V / I

I V
�tn M

N. I

I I�5

('I. I i
let -u 1 K.

* * � '�: I c� :t¶4 ¼�5

* ;; j�" J2 /;.' �I'.

*1 1 3 i

3d! * 8
I..
o j�1
"4

$1 K*1 4 S

U

V K

V I C
- sq

S1;:
U

>04

21

- S �> �:> kE:�'
r

I; *.'r :�
J�! �,.

W W *4 M Nfl
44 h� I A II N 2 ."tit:

38

I



IT

..

•" '[I .. .. • 1.1

'N. °r * "

. . .. . . '.. ...- ... . 1• ' .

u' 
,t '0



-'1"

2 
4•

K . . . . . . . . . . . . . . .4 . . .• . . . . . . . . . . :•

S. . ..-• -:- .... : :..T '- ..- I I I:,. :(5 ,

: ,- . A

I.1
i " . .I" 0

4*0 0

I . '4

•S



• = I.

• 4 il

tit 't
. . . .. .. . . ..... . -- -- 4!

,,- . .:?.

Ile.

/. . . •' .4 ",

: -: •ot 3 "" -:

Itt

411

S. .................. ... : .,,..*,.. . . .. . 4?: -,,!

.4,,,

I, :-- -I-"''".:. 0•.

-,, . a, - :-;t ...... . S•.• .

iC " N ft" - :
'S.; i ,

• • :: \~i t i < ,

PP4, 41

7•!:*::



- i-r

\ J. ,÷.

I;. III " ,

-, ,. .. 2

i'• ... .V" :-"

V ..

I-. . I°• ,

. ... ... ... •-. _.{:•-. ; ,• .., .-'.- ",•,

'4,.



defocus. The first figure shows the monochromatic case,

while the next two figuivS show the case of three wavelengths

with a total sprea, of +101, and five wavelengths with a total

spread of +20t.. Figures 2.11 - 2.13 and Figures 2.14 -2.16

show a similar seyies for one wave of coma, and for one wave

of coma plus ono wave of defocus,

hs mentioned above, these results indicate that the

polychromatic and monochromatic o'rF's are quite similar,
differinq mainly At. high spatial frequencies. If this sense the

effect of polychromatic radiation on the process of wave

aberration estimation is quite similar to the effect of detector

inoise on th~s process. Because the pliase retrieval algorithms

appear to be. highly insensitive tio moderate amounts of detector

noise, it is reasonable to conclude that they will likewise be

insensitive to the effect of moderate amounts of spectral
broadening in the detected radiation. This hypothesis can,

of couarse, be tented in computer simu lit ions ,i-o'•v.. it was

decided that such simulations were itot warranted within the

current effort.

4.3
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3.0 THE GERCIIBERG-SAXTON ALGORITHM

The Gerchberg-Saxton (G.S.) algorithm is a method which F
permits determination of wavefront aberrations from measured

point spread functions by the use of repeated Fourier transforms.

The overall operation of the algorithm is shown in Figure 1.4

of Chapter 1 and in more detail in Figure 3.1 below. It basically

consists of going back and forth between the generalized pupil p
function and the coherent spread function by means of Fourier

transforms, each time keeping the phase part of the function and

replacing the magnitude by the known correct magnitude, which

is the square root of the measured point spread function for

the coherent spread function, and unity for the generalized

pupil function. There is no proof that the algorithm must

converge, or that if it does, it will converge to the correct

aberration function. Clearly one possible mode of convergence,

which is the desired result, is that W becomes equal to the
2 k

actual wave aberration, and that ICSFI is exactly equal to the

measured h. If a different W were found such that we still had

I CSFJ 2 h, then this would be an example of non-uniqueness.

This has never occurred in .our simulations, although we cannot

prove its impossibility. A third possibility of convergence

is one in which neither W nor CSF ever reach the proper values,

but the estimates remain unchanged each time around the loop.

This last possibility in fact seems to be a common occurrence

although we are unable to state if the algorithm has truly con-

verged to a poor result, or is merely changing at a very slow

rate.

Previous work performed prior to this contract extensively

tested the G.S. alc;orithm in the one-dimensional case with
(7)excellent res,:lts. No examples of false convergence were

.A. J. Devarke,. .A.Gonsalves and H.Chidlaw, "Application of phase
retrieval techniques to adaptive imaging systems," J. Opt.
Soc. i'vr. WA)67, 1422 (3977).

44



................

a 0

& i -

I -d

'i; ~45 .

-- . . . . . . . . . . ... .. _. ,, ,



observed. The two-dimensional G.S. algorithmi was tested on

this contract for a number of cases. For some initial (random)

estimates of the phase, the procedure worked well. For others,

convergence is extremely slow (perhaps on the order of 10,000

iterations) if indeed it would even be reached, A convergence

acceleration technique inspired by Fienup18 ) yielded marginal

improvement in both the fast converging and slow converging

cases; but the slow converging cases remained too slow for use.

The fast converging cases can be driver. into instability by too

much of this procedure.

Table 3.1 is a list of results. The amount of aberration is

expressed in radians, in terms of: detocus - P r 2  third-order

spherical - P 4 r 4 and tha-rd-order 4stigmatism - Pr 2cos-.

The initial etstimate of the phase aberration is chosen as an

array of random numbers. TPhe RIMS value of the array is

adjusted depending on the Strehl ratio of the PSF. A linear

tilt is added if the peak value of the PSF is not at the array

center. The random numbers are qenwerated by a system routine

on the PDP 11/70 called RAN, It req,,iires two random number

"seeds" to determine a particular pseudo-random sequence. Three

set-s of sd were dan listed in Table 3.2.

t .... p... were ....

.J.P. !'ienup, "econ;truct ion of an ob from the modulus
of its T'ourier transform", J. Ort. oc. Ak. (A) 67, 1389 (1977)/
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TABLE 3.1

Results of Tests of the Two-Dimensional
Gerchberg-Saxton Algorithm

'ase Aberration Random Iterations N, N2 Acceleration Results 2[_(radians) Number Performed NF FIrt
_Seeds

1 P3  3 A 20 16, 32 good

2 30 good

3 50 very good

4 B 50 bad

5 A 50 0 0.01 very good

6 50 0 0.02 very good

7 50 0 0.05 bad

8 50 0 0.2 bad

9 20 10 0.05 bad

10 40 15 0.05 good

ii 13 50 8 32 bad

112~~ 11) 1a6~ 6F ir

Viraio admItera- N, N2 a- Results

(radians) Number tions Lion Start Mi. Finish:5eeds T.r

15 1).1 3 A 40 16,32 I 301.3 11.i

16 71 9.2

7 ITi 7.1

18 lV 4.7

1 9 V 2.7

20 VI 1.3

21. XII 0.77

22 VII 8.8 41,

23 VIII 6.5 26.9

24 IX 9.0 37.2

75 XI 6.o4 31.5
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i

TABLE 3.1 (Continued)

ase l.•berration Random Itera- N, N2 %ccelera- Results
(radians) Number tions tion

seeds Per- N NP Start Mi. Finish

formed ___

26 x 3 3.7 8 .3

27 B 50 X1I 315.0 112.0 115.0

28 P 3 = 2 A 40 16,32 bad

29 p 4 4 100 60 0.03 bad

30 (P5 =5 300 X 402 to 133 (de-
creasing very
slowly)

31 40 XV 402 to 178 (bad)

32 40 XIII 4.02 to 169 (bad)
(very

L I strong) __

48
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TABLE 3.2 RANDOM NUMBER SEEDS

A 11427 9223

B 2689 8957
C 4567 13879

The lens aperture is a circle of maximum diameter which

will fit into an N x N array of points. This is buffered out to

N2 x N2 with zeros. If N2 is twice N, the resulting PSF is

sampled at the Nyquist rate.

The column labeled "acceleration" refers to the parameters

using in attempting to accelerate convergence. If left blank,

tha original G. S. algorithm was used. In the "results"

column, a judgment of how well the first aberration estimate

compares with the actual input aberration is listed. Eventually

a measure of the error between the original and estimated PSF's

was added to provide a more exact measure.

Cases 1, 2, and 3 show the effect of increasing the number

of iterations of the G.S. algorithm, which is an improvement

in the estimat" nf the phase aberration. A different random

nuMber seed yields an estimate that bears no relation to the

actual aberration, in Case 4. Other results show that this case

has not really converged but is slowly changing.

Cases 12, 13, and 14 have a smaller amount of aberration.

With the random number seed in Case 12, after only 16 iterations,

the final estimate is definitely headed for convergence at the

actual starting aberration. With different random numbers,

even 80 iterations yields bad results. In Case 11, the effective

sampling of the point spread function has been doubled, by

reducing the number of points over the aperture to 8, but this

case still failed to converge.
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Cases 5 th.-ough 10 illustrate the first attempt at

accelerating the Agorithm. The G. S. algorithm was modified

by the addition of a term F. ( -h - CSF ), in the box labelled

"modified" in Figure 3.1. This term causes the CSF to be

corrected not to the known CSF modulus, fh, but rather shifted

by an amount proportional to the difference between the

estimate, ICSFI , and the desired quantitj /i, but in the

opposite direction. The parameter F denotes the strength of -

this correction. This new term has not altered what may be

termed an eigenfunction of the loop; if a W which exactly

yields a point spread function h is put into the loop, it will
return unchanged. Thus any function W at which the old algorithm

would converge will still be such a function in the new algorithm.

It was hoped that this would eliminate the false convergence

problems.

-A
In Cases S through 8, F was set equal to the value specified

in the tabl,:, from the beginning of the algorithm. For low F's,

this converged; for large F's, the algorithm did not. By

waiting for 10 iterations 1.fore applying an F of 0.05, there

is still no convergence in Case 9. But in Case 10, applying

F = 0.05 after 15 iterations, the algorithm does converge, it

was then decided to make the value of F, at any one iteration,

depend on the difference between 'hand ICSFI. An error was

defined by

ERROR ~CSFJ (3.1)

where the sum extends over the entire PSF plane. A series of

different P functions were tried, as defined by Table 3.3. In

all of these, the smaller the error becomes, the larger the

value of F is. In Cases 15 to 21, increasing the strength of

F resulted in faster convergence. In Cases 22 through 26, with

stronger F's, the error decreased to a certain point and then J
began to rise. A final error of less than 20 is indicative of

50



a very good estimate of the phase aberration. Although F

function XII worked well with random number seed A, in Case 27

with random number seed B, convergence was not obtained.

Cases 28 to 32 are with a larger amount of aberration.

Nothing worked for these cases, including a very large number

of iterations, and a very strong F function, which would no

doubt have produced an instability in the previous cases.

Case 4 was repeated with 1000 iterations, which is nearing the

limit of reasonable computation times on our 11/70, with no

improvement. A final algorithm was tried in which every

time the error, as defined by Equation (3.1) began to increase,

a new random number set between 0 and 2n was added to the

current estimate of W and the algorithm was allowed to

continue. After 1000 iterations of this, good convergence

was still not obtained.

The (. S. alqorithm is quite attractive from the standpoint
F,of implementat ion into Special Purpose hardware, and the !f

overall simplicity of the method, but unless the problem of

false convergence is solved, it will not be useable.
I'

I-
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4.0 THE DEVANEY ALGORITHM

4.1 NOISE-FREE, POINT I)FTECTOR RESULTS

The definition of the Devaney-Gonslaves phase-retrieval al-

gorithm is presented in the proprietary Appendix A. In this

chapter we merely present results. The results are repeated in

the Appendix with additional discussions concerning the algorithm.

Figure 4.1, 4.2, and 4.4 show, respectively, contour

plots of the oriqinal simulated phase aberration across an

aperture, the aberration estimated by the program, and the

residual aberration (the initial as corrected by the estimate).

The values at the contour lines are indicated by the symbols in

the table to the right of the graph. All values are in terms of

waves. The aperture eoordinates X and Y are in terms of the

re(iuc:ed •od.inate.s. "h, apertu'-' itsePlf is the best circle

which fits inside the square array; since the square array is
sampled o, on .1y a 9x9 mesh, the apertkir is not a perfect circle

On Figure 4.4, there is little residual aberration; less than a

deviation of 0.1 waves to either side of zero, which is the

minimum contour step value used hy the contouring program.

Figures 4.3 and 4.5 show the MTF's corresponding to the initial

aberration and the residual aberration. The latter MTF is

essential ly diffractiion limited; the deviation from circularity

near the center is due to the coarse grid on which the MTF is

evaluated. Only half of the MTF is plotted since it is symmetric

under the transformation (x, y)--(-x, -y). The coordinates x

and y on the graph represent normalized spatial frequencies; a

ivaluIe Of I indicates a frequency of A F. Figures 4.6 through

4.10 show contour plots of the results for another case. Yet

another case is presented in Figures 4.11 through 4.15. This

zcase had larger abet rations and took longer to complete than the

previous cases.
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The neXt case tised a larq-er and more complex aberration

and required still more computer time for proper performance.

Fiiure 4.16 numerically displays the phase aberrations over the

aperture in units of radians. As can be seen, the maximum

residual aberration at any point is less than 0.03 waves.

Figures 4.17 through 4.19 show contour plots for this case; the

residual phase aberration and MTF are not displayed since they

are c.ffect ively diffraction limited.
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Phase Aberration

SP H A S F A iD . P R A T I 0 N (RtADIANS)
: -1 2 3 4 5 *1 9 9

1 0.00 0.00 -5.11 -2.41 -0.95 -0.09 0.23 0.00 0.00
2 0.00 -4.73 -1.79 -0.41 0.41 1.20 2.09 2.69 0.00
1 -6.02 -1.95 -0.41 0.10 0.48 1.19 2.35 3.72 4.31 b1
4 -3.10 -0.47 0.15 0.12 0.20 0.83 2.14 3.41 5.34

h -1.39 0.42 0.49 O.tt 0.00 0.56 1.91 '.82 5054

6 -0.51 1.01 0.82 0.25 0.02 0.50 1.78 3.61 5.1b

1 -0.bO 1.20 1.07 0.47 0.16 0.52 1.60 3.05 3.84
0 H 0.00 0.46 0.81 0.39 0.06 0.,2 0.86 1.48 0.00 i(1
9 0.00 0.00 -1.00 -0.91 -1.18 -1.37 -1.5k 0.00 0.00

: Estimated Phase Aberration A•

P H A s E A 1% E R H A T 1 0 N (RADIANS)
1 2 3 4 5 6 7 8 9

1 0.00 0.00 -5.24 -2,47 -0.99 -0.12 0.14 0.00 0.00
2 0.O0 -4.80 -1.96 -0.57 0.2Q 1.11 2.04 2.66 0.00
3 -6.1S -2.02 -0.55 -0.02 0.37 1.09 2.25 3.69 4.26
4 -A.15 -0.5o 0.04 0.05 0.17 0.77 2.04 3.114 5.32
5 -1.42 0.34 0.41 0.08 0.00 0.53 1.62 3.74 5.52
6 -0.55 0.93 0.73 0.19 -0.02 0.43 1.60 3.53 ,5.11
7 -0.73 1.14 0.96 0.35 O.05 0.40 1.48 3.00 3.73
H 0.00 0.39 0.74 0.27 -0.01 0.10 0.79 1.41 0.00
9 0.00 0.00 -1.14 -0.90 -1.25 -1.44 -1.71 0.00 0.00

1P H A S F A 6 E. K R A T 1 0 H (RADIANS) All

1 2 3 4 5 6 7 9 9
1 0.00 0.00 0.13 0.06 0.04 0.04 0.09 0.00 0.00

2 0.00 0.10 0.08 0.11 0.12 n.10 0.05 (.03 0.00
3 0.13 O.o7 0.12 0,12 0.11 (.11 0.10 0.03 0.09
4 0.05 0..o9 0,.11 00o 0.04 0.06 0.09 o.b7 0.02
5 0.04 0.09 0.09 0,03 0.00 0.03 0.09 0.08 0.02
6 0.04 0.08 0,10 0.06 0.04 0.06 0.10 0.0 0.03
7 01.) 0.05 0.11 0.12 0.11 0.12 0.12 0.06 0.11
08 0.00 0.07 0.07 0.11 0.13 0.12 0.09 0.06 0.00
9 0.00 0.00 0.14 0.07 0.17 0.07 0.13 0.00 0.00

rFigurc 4.16 Test. 14 Phaso Aberration
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A'othux caise is shown in ]:'igpiros 4.20 throkiqh 4.22. Figure.

4.20 is the initial point- spre-tad .Ufinctic.-m The results of apply-

in; the wave.rt-ont (c-rrec-tion as estirdate(d by the phase retrieval;-

program, is shown in Fiqure 4.I. This e.st-imate. was eloarly not

an optimum est i.adt~e. Neverthele-' , it. is close enoulqh to the

actu~l- aberration that the corrected point sproead function is

conside rably i-,.pr'oved. The phase retrieval |)roq ram was then run 71ý

agai-n , wi th Ois isuproved point .pread function as input.

Correct inmc the syst.e this tilie yicl ds diffract ion limited perfor-

WCt. Thi.s. is, 1;m illv tsatkion of in "iterative" correction

schelee, where each cor:r-ection results in an improvement over thep-evious state of[ the optics. If the abe,,rratxins are severe

i~fl~k it It IInav we'l n rot 1)(, feasible t~o do allI t~he correCtionl kt;once ,but rather to '"'pIc 21o} ' otI'c ion ' '•"
0 1 -, ,. ~ ,..,,,l_ t O tfý,,W,0• a•: o f ý,-o u vr c t i o n .., t e p s. .
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4. 2 EFFIECTS OF NO111E '

We now p..resent results showinig the effTects ot detect.or

noi se. 'r'his noise is white, Gaussian, signial-independent noise

characterized by a Noise 1',quivalent Flux Density (NEF.ID). Thi is

tile power from a point source falling on the entrance pupil

which gives a siqnal to noise ratio of unity in the dotecitor

which receives the maximum 4imokmt of power from the diffraction

- imit.t.d point spread function. As such d04f-.ned, the NIFD is

Sdependtit on thie It :r(, (-A the entr ance pupil. Assume we are

saMpling at tile Nyquist rate with ;quarc* detectors; of area a, and

s. is the star image at the jth sampie position. The rMS noise

power ti

where I is tho pe tt.i" •t' r Th.int total pcwei from., one detector

is'

where n is a unii \;iit. ict white Ga-Usiza:n noise si ina]. T'he sum

of the tvower in 6.1- ¼ se i-;n, 1 i'.!;t eutal the incident p)ow(er:

.•I&'r:Ž I is th,, pw,,, r .e z n u I t •i te V .,,ei'~ ?W ~j iI. I
"wh'-,Iis"oi tw.... pr un~ re over" the entlr~ance' pupil. if

O
a neorm4~ I i Zote nlitlr I. is• d.he( i ned

A
S

a

F=

L5



F• then

and
• " A

S. - . I A s A NEF.!)

'4,The si'ntial to ioisc rzatio at the diffraction limited PSt peak,
F- Sz>, is

A

In o ir .imulation, Sp was oCqua tI o 69. .289., so for a S/N ratio

of W, we have

-1'> 2
A "e,'o Ma1n t ud,, 5, .r o1 1.6 x 10 watts/cm p

ASS.. fi::- a narrow band f i 1 t4'1- t' 1 t, ittl19i 0. ]1, wavelenflth to (Jet:
-16 :

VtI " P~t(ot0 h l' t 2.;l:x. d iat J )n - t.he tot ala power is 3.6 x 10

wat t. s/era" "he t cm Tn ';, si t udc': ztu" I tated .id tS h011 , f rom the
Sl n. t .~q it xi .

2.1 o10 -16
"-.6 x •0

t'u -c ; 4. d th ,m .:h .31 trer c i;nt th. results of a

simu.:latiion with no.10 ;e . .. 4,ue 4 .2 3 nhows (:ontours of the initial

phase .berration acros-) the exit, t.uji. le. key to the right

shows t he COntour val.uvE in te rms,: of WaVCS. Figures 4.24 shows

cont.o ',u of- t'he MT'" correspondti nc to this. phlisc abe rration.

'F iuro 4. is the -T1 t- cr voise htas been auded. The phase

78
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S I

aberration as estimated by the Progranm is displayed in

Figure 4.26. The residual phose, equal to the initial less

the estimate, is shown in Figure 4.27. Note that it is

significantly less aberrated than the initial phase. The MTF

correspxnd inq to the residual phase aberration is in Figure 4.28.

No noise has been added to this MIF. The point spread function

from the initial aberration is shown in Figure 4.29. The same

PSF with added noise is shown in Figure 4.30. The PSI" from the

corrected system is displayed in Figure 4.31. This is dc finitely

sharper than the first [SF. When the same case wa3 run without

noise, the corrected PSF was as shown in Figure 4.32. Thi - is

very nearly diffraction limited. Ilowevei. it must not be

thought that the noise was really responsible for a poorej phase

estimate. when the program was rerun in such a manner as -.o

simulate the results of a more complex version of the alg. "ithm,

a much better estimate o0 t-ho phase aberration was obtaine, .

Ti ht1e PS V from this-A: , c tr ,,c.tiOn i.A i• s .i aye( in Fiqure 4.33, The

version of the algorithur; needed to insure, good results in this

CAlse t' Cies much more computier time to execute. Folr a

different phase aberration or an alcqorithm ditfering in its

details, it could well be that a noise-free simulation might

yield a )oorer e.otimate than a simulation with noise. The

algorithm is niot perfect, but the noise presents no additional

difficulty. tt should not be difficult to find stars which

will provide at leas)t the sional to noise ratio tested here.

4. 3 EFFECTS OF NON-POINT I.)ETCTOIRS

In the case of extended (non-point) detectors the
A

rveasured Kiint spread funct'ion PSF(x, y) is related to the ideal

point: spread function PSV (x, y) by

A

P; I(x, y) , y) O D(x,y),

where 1) (x, y) is tht- d:',t.ec:tor response which we have taken

as a square of side I1:

:,3.88
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P(X, y) 1 0 < x < L 0 y ¢ L_

. 0 otherwise J
The OTF is multiplied by the transform of D

•2•A sin v ,,f sin nt Lf

,'OTF(fx, ty) = OTFtfX. Lf s. .-

A detector size of 100 units, as used in the simulations, has

the first zero due to the sine function at a spatial frequency

of 0.01 cycles/unit. The optical system with which we have
simulated here has a diffraction-limited cut-off trecluency as
determhined by the FA and tht wavelength of 0.05 cycles/unit.

which ia severely limited by the detector size.

,,,i ... thes, detector size I imi tat: ions on the received

signal, the phase retrieval alcorithm shows a remarkable ability -_J
to correct.ly perform est.imates, even in the presence of noise.

The results obtained in one simulation are pit-sented in
l-Pigures 4. 34 throuoh 4._38. igure 34 n;hows t he intensity profile N

of a ntar object of the same brightness relative to the detector
noise as presented in Section 4.4 imaged by an optical system

S•)Ssessing a wave aixerration function shown in Figure 4.35. The
ima(ge of the star was assumed to move across the local plane

detector array at a sufficiently small angle to the array axis

to allow the convolution of the s;tar image with the array trans-

fer function to be sampled at the Nyquist rate, F0F,/2, which is

10 units in the simulation. This convolution ir shown in Fiqure

4.36 where it. is assup.ed that the detector ar.-vy is composed of
square, 100 unit. x 100 unit detector elements. The signal has

been multiplied by a factor of ten r'elative to F'iqure 4.38. since
otherwise it would be difficult to see. Assuming the same NEFD
as used in Section 4.2 the noise corrupted, detected signal which

90
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W,,a-1i it pot. t~o t he a 1be vvat I1f (m)et imtI-~ .i (-)1Ia Iqo ithfll* C.IT-si

show n iLn riq,,tre 4 3 ia ,in v ltip l ' i d by tton}). Filw* iliy, thk)

; I o Of t l.tŽ .yst.em" Waivc abk.' rattiion ftullei(tiilll ptiOduc(! by I• : it-,

I k1qjor thm ii.; showni ini Fqi ro 4 . 38. 'Phisi, etimite,, is• -cm to beS~~very itccur,%tt as, is i-wide.tced by, the' vearsly kiitfrilac'tio lol inited
I_ ~point ilp-re•jt function whiieh rvos•i4ts after the ;.1daptive Optics

arie o4wr rtctted in ý'iqkiut 4. 39 A~I 1 o02 tie hre-iiunioa

plots of point sproed t'wictionu pregentcd here are sampled 1.1t

)ippr(xiMutely t.wice the Ny(IjUi1t rnt-. in order to clarify tile

- ~st ucturtt' ,ot i .: V ui: lh, tfor: - |- - itn q i .s S. i Mlw its.

The PSI" * actuka ly used in the Sillm- i t lon pItogrdm wlre s.•utltpled

at. only the Nyqkti!1t rate.
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5.0 T!IHE TWO-IM:.GE PLANE ALGORITIIM

5.1 INTRODUCTION

The two-image plane algorithm was devised in order to

perform wavefront aberration estimation from an unknown, extend-

ed object. When imaging a delta-function-like object, the
transform of the measured signal S(x,y) is P(f If ), the

x y
OTF of the imaging system. An extended object yields a transform

S(f ) O(fx f ) P(f , f ), where 0 is the object
X y y x y 3

transform. Since 0 is assumed unknown, P cannot be separated

out to permit use of the one-image algorithm already discussed

in Chapter 4. Appendix B presents the actual algorithm used
and provides a more complete discussion of results than in this

Chapter .

5.2 RESULTS

All t.he results presenv.:#d here used two 1-mage planes

separated by one wave of defocus, that is, a paraboloidal

aberration which is zero at the center of the aperture and equal

to one wavo at the aperture edqe is added to the existing

aberr.ation to simulate the result of movinq the image plane. The

proper amount to shift the image plane is presumably an amount

which causes a significant change in the OTF; it the defocus is

small compared to the aberrations already present, we would

expect peorer results. Variations in the amount of shift were
not investigated here. In an ima'iinu. system using a moveable

image plane, the amount of defocus can be controlled as

appropriate for the aberrations present.

Results are shown for only one particular phase aberration,
although it is thorouqhly investigated. The initial RMS

wavefront error was .708 w~aves. All cases presented only

simulated the operation of the extremely lengthy "complete"

98
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algorithm which is virtually guaranteed of finding a good esti-

mate in the absence of noise. Table 5.1 presents results for

varying amounts of noise. Point detectors and point objects were

used. The sampling is assumed to be at the Nyquist rate. The

R"•S error of the system after correction by the estimate is shown

in the column labelled "RMS". As the noise increases, the error -

of the phase retrieval estimates also increases.

Results of the Two Image Plane Simulations

M111S Noise Detector Object Ca se
Error IeveCl Size Width ,.

C0 708 Original

to:0.0 " Point Point K

0.016 0.01 Point Point N

0,,056 0.02 i Point P

0.081 0.04 M.____int Point 0_":_

Table 5.2 shows simulat with non-point detectors (but

I px)int objvcts). As i - onc image simulation-, the

detectors are assumed t res 1.00 units on a side, with

a -,. FI product- of 20 unj- " . error in the phase estimate has

incre,:esed by a fa(*to *. for case U versus case N, both

havino a noise lev, Case Z, with A/18 -is much noise as

case N still has a larger error. Figure 5.1 shows Mr's that

reveal how much information is lost by use of 100 unit detectors.
Figure 5.1(a) is the H'V fro,. the initial aberration in case N.

Figpre 5.1(b) has had the noise from case N added. Figure 5.1(c)

presents the transform of the detected signal, which is the MTF

from Fi,.re 5.l(a) multiplied by the transform of the detector
response. Note that little information is present c: ept at the

very lowe" . frequencies. Figure 5.1(d) shows the result of adding

9I
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the noise in case Z (which is much less than in case N). These

MTP's display only one quadrant.

'TABLE 5.2

Results of the Two-Image Plane Simulations

RMS Noise Detector Object CaseSLevel nowWi t . .. " ~

0.708 Original

0.087 0.01 100 Point U

0.070 0.005 100 Point V

0.045 0.0025 100 Point Y

0.022 0.00125 100 Point

0.010 0.037 0.333 0.025 0.014 0.000 0.000 0.000 n.,000
0.074 0.054 0.037 0.014 0,007 0,009 0,000 0.000 0.000
0.047 0.037 n.070 0,07 0.02.1 0,002 0.020 0.000 0.000
0.105 0.083 0.052 0.04$ 0.086 0.024 0.060 n.Ui8 0.000
0.057 0.0b0 0.067 0.,(18 0.053 0.077 0.059 0.020 0.014
0.])b 0.020 0.027 0.142 0.01h 0.071 0.04b 0.034 0.013
0.094 0.046 0.074 0.165 0.027 0.040 0.029 0.0R 0.038
0.242 0.024 0.081 0,043 .,029 0.043 0.055 0.05P 0.035
1,000 0.170 0.102 0.093 0.108 0.111 0.032 O.0'6 0.027

Figure 5.1(a) Case N, Original MTF

0.031 0.059 0.02b 0.041 0.049 0.068 0.*04 0.038 0.030
O.O6l 0.093 0.039 0.052 0.025 0.021 0.055 0.092 0.022
0.,00 0.053 0.049 0.114 O.056 0.058 O.nP9 0.010 0.036
0.070 0.040 0.041 0.015 0.070 0.076 0.055 0.044 0.010
0.077 0.08R 0.117 0.083 0.068 0.064 0.032 0.038 0.058
0.143 0.072 0.0J4 0.151 0.042 0.065 0.031 0.011 0.072
0.199 0.060 0.063 0.190 0.009 0.045 0.OO 0.076 0.038
0.263 0.042 O.Ob! 0.07A 0.019 0.060 0.066 0.022 0.048
1.000 0.167 0.095 0.069 0.110 0.135 0.094 0.036 0.033

Figure 5.1(b) Case N, Noisy tITF
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0.001 0.00t1 0.000 0.000 0.000 0.000 0.000 0,000 0,000
0.002 0.00) 0.000 0.000 0.000 0.00o 0.000 0.000 0,000
0.004 0.002 0.001 0.001 0.000 0.000 0.000 0.000 0.000
00( 8 0.003 0.)00 0.(00 o.001 0.000 0.000 0.000 0.000

0.023 0.002 0.000 0.004 0.001 0.001 0.001 0,000 0.000

0.009 0.003 0.001 0.003 0.000 0.000 0.000 0,000 0.000
0.137 0.00t 0.004 0.004 0.001 0.00o 0.003 0.001 0.001 A

10.0O0 0.096 0.010 0.015 0.0)0 0.o0A 0.003 0.000 0.002

Figure 5.1(c) Case Z, Transform of Detected Signal of Point Object

0.003 0.004 0.003 0.006 0.008 0.0o0 0.010 0.005 0,004
0.005 0.006 0.000 A,.004 0.004 0.002 0.007 0.011 0.003 A
0.000 0.001 0.003 0.OO 0.004 O.nO7 0.011 0.001 0.004
0.003 0.003 0o.0 0.005 O0.007 0.006 0.003 0.004 0.002
0.0o•6 0.007 o.(005 0o.0, 0.004 0.003 0.006 0.002 0,007
0.023 0.005 (.001 0.006 0.006 0,004 0,003 0.005 0,009
0.006 0,004 0.005 0.005 0.0o3 0.001 0.003 0.003 0.002
0.1)t4 0.010 0.008 0,004 0.002 0,006 0.002 0.006 0.')04
1.000 0,095 0.013 0.019 0.010 0.010 0.006 0.004 0.004

1Figure 5.1(d) Case Z, Transform of
Dctected Signal of roint Object Plus Noise

Cases AA, BD, and CC in Table 5.3 have the same noise and

detector size as Case Z, but now an extended object is used. The

object is taken to have an intensity in the image plane given

by a Gaussian

IOBJ(xY) = CXp + )/D ]

TABLE 5.3

Results of the Two-Image Plane Simulations

kpuS Noise T Detector Object Case
Level Size Width

0.708 ___________ original

0.029 0.00125 100 157.1 AA

0.041 0.00125 100 314.2 BB
0.60 0.00125 100 628.3 C

0.088 0.0025 100 628.3 DD
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D is listed in the table under "Object Width" and is in the

same units as the detector size. The detected signal is given

by the convolution of the system 1P1F with the detector response

and the object distribution:

S(xy) = PSF(s,y) * D(xy) * I (x'y)

The transform of I is

2 2 2

IOBJlfx, fy) exp (- T-Do(f + f ) 1
x Y 1 03x yJ

The transform of the detected signal is

Stfx fY O °F(fx fY Dlfx fY I (OJfx fY)•

As the object size increases (in case AA, BB, and CC in Table

5.3), the error on the phase retrieval estimate increases. The
77 1

additional attenuation of the hijh frequencies due to the object ,

size is shown in Figure 5.2, which represents the detected signal

transform with and without noise, from case CC. This may be

compared to case Z in Figure 5.1(c), in which the only difference

is the use of a non-point object in case CC. More high frequency

information is lost in case CC. Case DD, from Table 5.3 h3s

twice as much noise as case CC, and may be compared with case Y,

which has the same amount of noise but a point object. Case DD

yielded an estimate having twice the residual. error of case Y.

0.000 0.()00 0.000 0.o0( 0.000 0.000 0.000 0.000 0.000)
n.00o 0.0(10 0.000 0.000 o.000 0.Oono 0.00co 0.000 0.000
0.nOO 0.000 ().000 0.000 0.000 0.000 0.000 0,000 0.000o.ooo o.ooo 0.000 0.ooo 0.00o O.nOO0 0.00o 0.000 o.o00 0:

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0100 0.000

0.040 o,001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 O.O•

1.000 0.028 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Figure 5.2(a) Case CC,
Transform of Detected Signal of Extended Object I]
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0-0A01 O.O0. 0.003 0,0 006 •.004 0.008 0.010 0.00%O 0.0l4
0.003 0.OOb )OOQ 0.004 0.004 0.002 0.007 0.011 0,003
0-004 0,002 0.003 0,008 0,004 0.007 0.011 0.001 0.004
-:. 05•,006 O,0n. 0.004 0.00• 0.006 0,003 0.004 0.002
0.004 0,004 0.00, 0.006 0.004 0.0004 0.005 0.002 0.,'7
1 0.004 0,006 0.001 0.005. 0.006 0.004 0.004 6.005 0.004
n.012 0.003 o.00! 0.0(2 0.003 0.001 0.003 A.003 0.002

- -. 041 0,003 0.003 0.00. O.CO3 0.006 0.001 0.006 0.004
-.Ou0 0-077 0.004 0.003 0.001 0.002 0.009 0.004 0.00S-

Figure 5.2(b) Case CC,
Transform of Detected Signal of Extended Object Plus Noise

In summary, the two-image plane technique certainly works;

it does suffer from the same problem as the one-image plane

algorithm, that of very long execution times to insure the best

estimate. Finally, it may be worth noting that although we have

used the addition of defocus to the system, since it is oasy to

add a known amount, any sort of other aberration could also work,

as long as it was known. These aberrations could be induced by
varying the active optics, or by the intruduction of aberrating

elements into the optical system. Also possible are algorithms

utilizing three or more different focus positions which may be

useful in the presence of a large anmunt of noise, or for very

large objects.
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6.0 CONCLUSIONS AND RECOMIENDATIONS

EIKONIX has successfully demonstrated phase retrieval of

Scomplex amplitude from its modulus under a wide variety of

conditions. Our methods are directly applicable to the

problem of actively controlling an optical system and possess

definite advantages over other methods such as direct inter-
ferometric measurements of the wavefront aberration which

requires integration of elaborate and costly electromechanical

devices into the system. In particular, our algorithm works

well for a wide variety of wavefront aberrations, reference

objects, detector sizes and noise levels.

The only information needed to perform phase retrieval is

the detected signal of a bright "point" object sampled at the

Nyquiat rate. Although the planned detector sizes would seem

to preclude Nyquist sampling, use of image motion across the

focal plane array, with suitably spaced time samples, can

provide the necessary spatial resolution. Despite the fact that

much of the higher frequency information in the OTF is lost due

to the detector size, our simulations were successful with the

planned HALO detector sizes.

Phase retrieval simulations have not been performed for

polychromatic ridiation but OTF calculations show that for a

bandpass filter transmitting from 0.A to 1.2 of the central

wavelength, the polychromatic OTF differs only slightly, and at

the higher frequencies, from the monochromatic OTF. This

difference would be obscured by noise and the large detector size.

Thus, we do not feel that there would be any difficulty in per-

forming phase retrieval on broadband radiation provided some

sort of filter is provided.

Simulations have been run using white noise on the

detected signal as specified by the NFFD of the focal pltac
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detector arrays. Phase retrieval has been shown to be.

possible even when visually the signal from a point source is

apparently totally obscurred by the noise. The noise

simulations also assumed a very narrow-band spectral filter

which reduced the energy from the point source significantly.

It should not be difficult to find stars which yield a sufficient

siunal-to-noise ratio. 7I
It may be necessary to estimate aberrations in regions of

the field of view which are totally below the horizon, and con-

sequently will probably lack bright point objects. In this

case, it is still possible to perform phase retrieval using a

bright extended (non-point) object as a target: however, two :9
images must be obtained at different focus positions. This

procedure hais been succ-essfully simulated. A

The chief difficulty with the method lies in executing

the algorithm in an acceptable length of time. Current

simulations take about thirty minutes on a PDP 11/70. Special

purpo'se hardware could reduce this by at least a fact, or of 100

but. the computation time increases exctremely rapidly as the

magnitude axid the numbwer of degrees of freedom of the wavefront

' aberration increases. It will be necessary to reduce the

running t~me before realistic simulations of the HALO system

could be performed.

Further study of the Gerchberg-Saxton algorithm is needed

to understand its convergence problems in two dimensions. 't

works well in one dimension and has the potential to be much

faster than the parameter search method.

Another question to be answered is the range of magnitudes

of the aberrations such that phase retrieval can be performed in

a specified period of time. This will. impact on how accurate

the initial alignment procedure must be. This question must
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also be coordinated with a more realistic model of the

aberrations expected from IIA.O, both at the point of takeover

of control after the initial alignment, and the drifts in mirror

positions as a function of time. Also to be considered are the '

effects of short term fluctuations which could cause shifts in

the aberrations between measurements done at slightly different

times, which otherwise would have been expected to be measuring

exactly the same aberration functions.

The problem of precisely which stars that are bright

enough to bte used as pctnt objects and which will be? able to be

acquired is not yet answered. Although there are many stars
which would be suitable, there is the additional constraint that

nearly simultaneous measurements be made in perhaps six different

isoplanatic reions.

Simulation of extended (non-point) objects has been

limited to Gaussian intensity distributions. Other kinds of
objects, such as random scenes, may be more appropriate.

The problem of "deconvolution", that is, obtaining mirror
positions from a knowledge of the wavefront error in several
different. regions of the field of view is complicated by the

two-fold ambiguity in the phase retrieval estimates inherent in

any problem with a symmetrical pupil function. Although many of

the field points will not have a nearly symn~etrical pupil, the

magnitude of this problem must be determined in conjunction with

the designers of the IIALO optical system. Simulations so far

have only treated the case of on-axis imaging of a symmetric

optical system. Eventually off-axis cases must be considered,

and possibly non-symmetric systems. A realistic treatment will

involve more detailed knowledge of the optical system.
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